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PROBLEM: Why does our procedure lead to unphysical 
results when using the OPLIB opacity tables? 

Colder temperatures 
inconsistent with 
Hydro images and 

DANTE data. 
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The heat front position vs. time places a stringent constraint 
on the radiative energy delivered by the hohlraum. 
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Cassio 

It was simply NOT possible 
to heat up that much foam 
with only HALF the energy, 

in the time we had! 

Recalling that flux goes 
as T4 so a 20% reduction 
in temperature is a factor 

of TWO in radiation.  

Spatial position was good to 
20 microns, foam density to 
3%, hohlraum exit hole ~2%. 

Image and spectral data clearly 
constrained heat front position 

Since 

and 

Thus 



The spectral measurement constrains the mean charge state 
(or Z-bar) of the foam — electron temperature is inferred. 
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Titanium 1s-2p Transitions 

•  Each spectral topology 
corresponds to a specific mean 
charge state (Z-bar) 

•  The opacity tables set forth the 
relationship between electron 
temperature and ionization 
state (i.e. mean charge) 

•  Using these tables, PrismSpect 
calculates the spectral topology 
for a given electron temperature 

•  By matching this topology to 
spectral data, the electron 
temperature is inferred. 

Inferring Temperatures 

Spectral topology is very sensitive to Z-bar. The 
difference between the red and cyan lines 

above corresponds to a 4% change in Z-bar. 
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Depending on whether PrismSpect employs Oplib or Atbase 
tables, widely disparate ionization states are predicted.  
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•  Assume the spectral data 
corresponds to Z-bar of 8.3. 

•  PrismSpect with Oplib would 
predict this occurs at 102 eV. 

•  PrismSpect with Atbase would 
predict this occurs at 112 eV. 

•  This is a 10 eV discrepancy, 
and in terms of hohlraum drive  
would be VERY significant. 

Example 

Are they really THAT different or 
is something else contributing? 

50 mg/cc 



Opacity tables must be built by elements and “mixed” 
according to the stoichiometry of interest. 
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50 mg/cc 

Simple Example: SiO in Atbase 

Pure Si 

Pure O 

50% Si 
50% O  

Averaged 

•  Three PrismSpect simulations 
were conducted with Atbase 

•  Pure Si @ 50 mg/cc 
•  Pure O @ 50 mg/cc 
•  Mixed SiO @ 50 mg/cc 

•  The average was manually 
calculated from the Pure Si and 
O results. 

•  An overlay of the Averaged and 
Mixed cases show agreement. 

Good! 
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When mixing our Oplib tables, PrismSpect introduces an 
error, leading to a systematic enhancement of Z-bar. 
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50 mg/cc 

Pure Si 

Pure O 

50% Si 
50% O  

Averaged 

Simple Example: SiO in Oplib 

•  Three PrismSpect simulations 
were conducted with Oplib 

•  Pure Si @ 50 mg/cc 
•  Pure O @ 50 mg/cc 
•  Mixed SiO @ 50 mg/cc 

•  The average was manually 
calculated from the pure Si 
and O results. 

•  An overlay of the Averaged 
and Mixed cases show NO 
agreement. 

Bad! 
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Cassio results show PrismSpect successfully reproduces our 
Oplib information for pure scenarios – mixing still a problem. 

9/11/18   |   8 Los Alamos National Laboratory 

SiTi 

PrismSpect Oplib mixtures still show discrepancy 
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By manually mixing Oplib tables, we estimate the 
discrepancy to be around 10-12 eV. 
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50 mg/cc 

•  The manually mixed Z-bar is 
prescribed as 

•  1/18ZTi+5/18ZSi+12/18Zo 

•  It remains unclear whether 
•  A) this result arises from 

mixing incomplete Oplib 
tables, or 

•  B) is a fundamental error 
within PrismSpect. 

•  Iteration with Prism is 
recommended. 
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When correctly mixed, Atbase and Oplib tables yield similar 
inferred temperatures – varying by less that 3 eV. 
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Conclusion 
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•  The systematic reduction in inferred temperatures for COAX 
experiment arises from an error in how PrismSpect is mixing 
opacities from our Oplib tables. 

•  It is unclear whether this is a PrismSpect bug or an incompatibility 
with our Oplib formatting. 

•  PrismSpect does, however, successfully reproduce Cassio results 
when modeling pure material behavior with our Oplib tables. 

•  When Oplib information is manually mixed, temperature inferences 
increase by 10ish eV. 

•  Moreover, the manually mixed Oplib results agree with Atbase to 
within a few eV.   

•  It may be worth contacting Prism for further information. 


